镍钛合金自膨胀血管支架3D打印研发取得新进展

血管内支架主要是采用生物医用金属、合金或医用高分子材料,经特殊加工制造而成的,用于治疗人体血管管腔狭窄或闭塞的医疗器械。在金属支架中,不锈钢或钴铬合金制成的气囊膨胀支架,以及由镍钛合金镍钛诺制成的自膨胀支架是医疗市场上已有的产品。

随着镍钛合金自膨胀支架在血管狭窄等疾病中的介入治疗中的广泛应用,镍钛合金血管支架的制造技术也得到了发展,大致经历了三种不同的制造技术,最初的镍钛合金自膨胀支架是螺旋线圈状结构,后来出现了编织网状结构支架,目前较新的技术为激光切割管状支架。

澳大利亚研究机构CSIRO Lab22 增材制造实验室,应临床医生改进镍钛合金自膨胀支架的需求,开发了一种通过选区激光熔化(SLM)3D打印技术制造支架,该支架在设计自由度和可定制方面显示出一定优势。

Video cover_CSIRO Lab223D打印支架压缩测试。来源:CSIRO

block 高几何精度与按需定制

Lab22 增材制实验室在医疗器械3D打印领域研发领域已取得了多项成果,包括个性化3D打印胸骨植入物和脚后跟植入物。

Lab22 团队一直在探索选区激光熔化增材制造工艺进行3D打印镍钛诺自膨胀支架的可行性。选区激光熔化3D打印技术能够创建具有高几何精度的复杂血管支架,同时易于实现患者定制支架的按需制造。

Lab 22团队也表示,使用SLM开发镍钛合金支架是具有挑战的。他们采用的镍钛合金材料为镍钛诺,这是一种形状记忆合金,在受压时会表现出超弹性。该材料具有独特的晶体结构,晶体结构在受到压力或加热时会发生变化。合金的两个不同相(马氏体和奥氏体)是由温度决定的,而相变温度对支架的制造条件极为敏感。为了使支架表现出自我膨胀,转变温度需要低于体温37°C。此外,SLM 3D打印的工艺参数需要适合制造支架的超细网状结构,包括尺寸为80-200 µm的细支杆。

Part_self-expanding-nitinol-stents_SLM_CSIRO5种不同尺寸的SLM 3D打印微小金属支架。来源:CSIRO

根据Lab 22增材制造实验室,增材制造技术为支架设计提供了自由度,设计开发人员能够根据需要开发特定尺寸的血管近端和远端直径,并且还能够通过这一工艺制造更大尺寸的支架、交叉分支以及近端和远端血管的新形状。另外3D打印技术将增强血管支架的定制生产的能力,减少库存、提高资源的有效利用率。对于患者而言,这类3D打印特殊血管支架具有更好的血管顺应性,有望改善患者体验。

block 3D科学谷Review

镍钛合金自膨胀血管支架大致经历了三种技术的演化:螺旋线圈状结构,编织网状结构支架,与激光切割管状支架。

nickel titanium alloy stent_Valley 医用镍钛合金支架性能指标

线圈状结构支架由镍钛合金丝线缠绕而成,支架制作简单富有弹性,但缺点是强度不足且覆盖率低,容易产生术后再狭窄现象,这种方式已逐渐被淘汰。网状结构支架是由镍钛合金丝线编织而成,弹性好但强度差且容易产生位移现象,这类支架现在使用也较少。激光切割管状支架是目前临床中使用最广泛的类型,制造方式是激光雕刻,这类支架较好的避免了前两代技术的缺点,不存在焊点结构并且与病变管腔之间的接触为面接触,对病变管腔内壁的作用力较强,不易发生移位现象,同时结构强度大,壁厚较小。

镍钛合金自膨胀血管支架的制造技术仍在继续发展。目前常用镍钛合金血管支架制造方式仍存在生产成本高、支架结构设计受限、难以实现复杂形状,并且精度、光洁度等关键性能达不到等问题。

选区激光熔化作为一种新的镍钛合金自膨胀支架增材制造工艺,尚未成为一种成熟的商业化血管支架制造技术,但科研机构对这一应用的研究已开展多年,切入点包括实现更复杂的设计与开发改良的镍钛合金粉末材料及其增材制造工艺。3D科学谷在文末列举了我国镍钛合金血管支架增材制造领域的典型科研成果。

l 工艺开发与打印原料配制

南京航空航天大学研发了一种基于自动铺粉(选区激光熔化3D打印)的激光组合加工技术制备形状记忆合金(镍钛合金)血管支架的方法,该方法根据待加工零件的三维数据模型,利用高能激光束熔化混合粉末体系,通过逐层铺粉、逐层熔凝叠加累积的方式,直至最终成形网状结构的血管支架坯件,然后经过电化学抛光处理达到特定表面粗糙度要求。

该方法制备的血管支架依靠形状记忆合金所特有的超弹性功能和形状记忆效应,可有效降低血管支架在临床应用时血管再狭窄发生率;通过力学性能和模拟生物体环境测试,血管支架具有良好的生物组织和血液相容性,符合医学应用条件;且基于激光组合加工技术超高制造精度的优势及成形过程中惰性气体的保护,有效克服传统血管支架制备时加工表面粗糙、毛刺和氧化等问题。

l  更灵活的设计:不同部位不同膨胀系数

华南理工大学基于研发了一种具有记忆效应的三维矢量膨胀心血管支架,支架由具有矢量膨胀效应的金属材料经金属打印制成,包括多个沿轴向均匀排列的由内凹六面体网格基本单元组成的网环状丝材,并由多层所述网环状丝材沿阵列构成支架主体,位于支架主体两端的网环状丝材分别连接有上支撑环和下支撑环,通过上支撑环和下支撑环将支架主体固定。其制造方法为,通过控制激光选区熔化的能量密度,调控奥氏体‑马氏体相变温度,用不同能量密度成形基体结构不同部位,达到成形心血管支架基于温度依赖性变化的变形可调控性,从而使支架不同部位基于温度具备不同的膨胀系数,使得支架更加适应血管形状的特异性和热胀冷缩性。

此外,华南理工大学还开发了一种原位调控镍钛合金功能特性的4D打印方法,该方法采用金属增材制造实现对镍钛合金粉末+纳米级镍粉的混合粉末的增材制造成形,通过调控镍钛合金粉末和纳米镍粉的混合比例,进而精确调控镍钛合金的镍钛原子比,最终调控其相转变温度和功能特性,以拓展镍钛合金的产业化应用领域。

如上图-医用镍钛合金支架性能指标所示,镍钛合金支架作为一种植入式的医疗器械,对于各项性能指标的要求都非常严格,无论其制造技术如何演化,都需满足6种基本的性能指标。增材制造技术是否发展成为新一代镍钛合金自膨胀支架制造技术,该技术的商业化之路将如何发展,3D科学谷将保持关注。

参考资料:

《医用镍钛合金自膨胀支架的结构设计及力学性能》;

《镍钛合金血管支架的有限元分析及疲劳测试》;

《镍钛合金支架概述及其加工》;

CN105033252A;CN105662650B;CN110465662A;CN108403256A.

白皮书下载,加入3D科学谷产业链QQ群:529965687
网站投稿请发送至2509957133@qq.com
欢迎转载,长期转载授权请留言

分享:

你可能也喜欢...